CVPR2021 | PAConv:一种位置自适应卷积,点云分类、分割任务表现SOTA

导读:  

由香港大学CVMI Lab和牛津大学合作提出了一种点云上具有动态内核组装的位置自适应卷积——PAConv: Position Adaptive Convolution with Dynamic Kernel Assembling on Point Clouds,论文已被CVPR2021接收。

PAConv的卷积核由多个基本权重矩阵组装而成,而在组装过程中,这些权重矩阵的系数是通过点的位置关系自适应学习得到的。这种以数据驱动构建卷积核的方式赋予了PAConv很强的灵活性,以更好地处理不规则和无序的点云数据。此外,与现有点云卷积高度工程化的网络结构不同,作者将PAConv直接集成到基于MLP的经典点云网络架构中,而无需更改原有的网络配置。即使建立在简单的网络架构上,PAConv仍然以很高的效率在点云分类、部件分割和场景分割的任务中表现SOTA。目前全部的代码和模型都已开源,欢迎大家follow!

论文、代码地址:在公众号「3D视觉工坊」,后台回复「PAConv」,即可直接下载。

一、引言

近年来,深度学习在三维点云处理上取得了显着进步,但鉴于点云的稀疏性、不规则性和无序性,这仍然是一项具有挑战性的任务。现有方法大致分为三类:第一类是对点云进行体素化以便可以采用三维网格卷

3D视觉工坊 CSDN认证博客专家 算法 3D视觉
个人公众号:3D视觉工坊。公众号特邀嘉宾及合伙人,先后就职于国内知名研究机构、自动驾驶公司、海康研究院,主要研究方向为深度学习、目标检测、语义分割、图像处理、自动驾驶感知算法等,CSDN博客专家。博主先后任职于国内知名研究院、知名大厂,致力于3D视觉算法、VLAM算法开发,涉及相机标定、手眼标定、结构光、点云后处理、三维重建等相关领域的研究,同时也是CSDN博客专家。3D视觉工坊坚持原创,近一年来输出了非常多的高质量文章,获得了粉丝的一致好评,我们将始终坚持走原创路线,打造一个铁杆粉丝的聚集区。
已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 书香水墨 设计师:CSDN官方博客 返回首页
实付 49.90元
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值