基于YOLO的新型RGB-D融合方法对行人进行检测和3D定位

标题:Accurate detection and 3D localization of humans using a novel YOLO-based RGB-D fusion approach and synthetic training data

作者:Timm Linder, Kilian Y, Pfeiffer, Narunas V askevicius, Robert Schirmer1, Kai O. Arras

来源:ICRA 2020

编译:姚瀚晨

审核:wyc

转载:泡泡机器人SLAM

摘要

大家好,今天为大家带来的文章是—— 基于YOLO的新型RGB-D融合方法和综合训练数据对人类进行准确的检测和3D定位。

Accurate detection and 3D localization of humans using a novel YOLO-based RGB-D fusion approach and synthetic training data.

  • 挑战——存在遮挡的情况下在3D空间中稳固地定位对象仍然是一个尚未解决的问题;

  • 本文的重点——实时检测RGB-D数据中的人类3D重心。

本文创新点:

  1. 提出了一种基于图像的检测方法,该方法将YOLOv3架构扩展为具有3D质心损失和中级特征融合,以利用这两种方式的互补信息;

  2. 采用了一种迁移学习(transfer learning scheme)方案;

  3. 进一步提出了一种几何上更准确的深度感知增强方法,用于训练RGB-D数据,这有助于提高3D定位精度。

贡献

  1. 部分遮挡下进行精确的3D定位是一个尚未解决的问题,这是一个重要研究方向,例如用于机器人技术中的人体检测;

  2. 我们是第一个为快速YOLOv3单级检测器提出RGB-D融合策略的公司,并提出了一种利用现有大规模2D数据集的伴随转移学习策略;

  3. 重心区域随机化(heavy domain randomization),我们能够从合成渲染的多人RGB-D数据集中学习3D人类质心的端到端回归;

  4. 发现标准的2D裁剪/扩展增强(2D crop/expansion augmentations)不适用于深度数据,并提出了一种几何上更准确的变体,它可以解决焦距的最终变化

  5. 真实世界的RGB-D数据集中,我们的方法在3D人检测中优于现有的基线方法,而不需要额外的手工注释的3D ground truth进行训练。

方法介绍

传统的检测方案有三个缺点

  1. 局部稀疏的点云的3D目标定位上失效——我们的方法可以利用互补的RGB数据,因为它不依赖于点云表示;

  2. 多目标重叠时候,只能检测到一个目标。这种情况在我们的室内环境中很常见,行人经常部分地相互遮挡;

  3. 基于RGB-D的二维检测(RGB-based 2D detector)装置在光线条件困难的情况下失效——由于我们的中层融合策略(mid-level fusion strategy),我们的方法可以利用互补的深度数据

图1:我们的方法(绿色)定位三维人体质心

比基线(红色)的方法更加鲁棒

       表I 比较了传统RGB-D相机在行人检测上的工作:

表I:量化分析RGB-D相机和3D行人检测中的相关工作

3D检测行人目标的挑战:

  • 大多数工作都集中在刚性物体上;

  • 行人在形状和外观上差异很大,因此在检测方面特别具有挑战性。

方法

方法总结:

  1. 用合成的RGB-D数据集学习3D行人的检测和定位;

  2. 提出一种在RGB-D数据中训练3D检测器的深度感知(depth-aware)和尺度维护( scale-preserving)方案;

  3. 展示了我们对YOLOv3检测器的修改:混合了RGB和深度信息,回归3D质心的端到端的方式。

图2:四幅图显示了3D地面真相联合位置在我们的合成RGB-D和我们的真实世界RGB-D数据集上。后者来源于离线三维人体姿态估计,如果需要,只用于对真实世界数据进行微调。 

图3:概述了我们提出的方法,它扩展了YOLOv3检测器与中层RGBD特征融合,深度感知增强和三维质心回归。我们表明,后者可以从合成的RGB-D图像中学习。

(1)对深度值进行缩放:其中,(x,y,z)是RBG-D相机中的一个3D点,z/s是缩放的深度值,(u,v)是输入的像素。

(2)是对行人中心(cu,cv,cz)的预测:其中,(cx,cy,cz)是1x1神经网络的输出值,(bu,bv)是高为bh,宽为bw像素的左上角。

主要结果

表格II是参照实验的结果:我们的合成的验证集(2个额外的场景,5k帧不同的像素)与精确的地面真相。我们使用了一半的合成训练集(7.5k帧)进行训练。在合成训练集的情况下,特别是在较小距离阈值下的三维定位得到了改善。结合RGBD融合可以显著提高三维检测精度,并微弱地提高二维检测精度。

表II:我们的合成验证集的参照实验与完美的3D ground truth。除非标注出来,在第二阶段后进行RGBD融合。

表III:在我们的真实世界测试集的60秒序列上的三维中心的精确召回曲线。实线对应的评价半径为0.5m,虚线为0.25m。十字架处在F1的高峰点。对于我们的方法,S代表合成的训练数据,R表示真实的训练数据。

图4:从RGB-D数据集的一个场景中获得了在F1峰值处的定性3D检测结果。颜色来自表III;灰色是地面真值

图5:两个距离更长,更杂乱场景的结果

点击阅读原文, 即可获取本文下载链接。

本文仅做学术分享,如有侵权,请联系删文。

下载1

在「3D视觉工坊」公众号后台回复:3D视觉即可下载 3D视觉相关资料干货,涉及相机标定、三维重建、立体视觉、SLAM、深度学习、点云后处理、多视图几何等方向。

下载2

在「3D视觉工坊」公众号后台回复:3D视觉github资源汇总即可下载包括结构光、标定源码、缺陷检测源码、深度估计与深度补全源码、点云处理相关源码、立体匹配源码、单目、双目3D检测、基于点云的3D检测、6D姿态估计源码汇总等。

下载3

在「3D视觉工坊」公众号后台回复:相机标定即可下载独家相机标定学习课件与视频网址;后台回复:立体匹配即可下载独家立体匹配学习课件与视频网址。

重磅!3DCVer-学术论文写作投稿 交流群已成立

扫码添加小助手微信,可申请加入3D视觉工坊-学术论文写作与投稿 微信交流群,旨在交流顶会、顶刊、SCI、EI等写作与投稿事宜。

同时也可申请加入我们的细分方向交流群,目前主要有3D视觉CV&深度学习SLAM三维重建点云后处理自动驾驶、多传感器融合、CV入门、三维测量、VR/AR、3D人脸识别、医疗影像、缺陷检测、行人重识别、目标跟踪、视觉产品落地、视觉竞赛、车牌识别、硬件选型、学术交流、求职交流、ORB-SLAM系列源码交流、深度估计等微信群。

一定要备注:研究方向+学校/公司+昵称,例如:”3D视觉 + 上海交大 + 静静“。请按照格式备注,可快速被通过且邀请进群。原创投稿也请联系。

▲长按加微信群或投稿

▲长按关注公众号

3D视觉从入门到精通知识星球:针对3D视觉领域的知识点汇总、入门进阶学习路线、最新paper分享、疑问解答四个方面进行深耕,更有各类大厂的算法工程人员进行技术指导。与此同时,星球将联合知名企业发布3D视觉相关算法开发岗位以及项目对接信息,打造成集技术与就业为一体的铁杆粉丝聚集区,近3000星球成员为创造更好的AI世界共同进步,知识星球入口:

学习3D视觉核心技术,扫描查看介绍,3天内无条件退款

 圈里有高质量教程资料、可答疑解惑、助你高效解决问题

觉得有用,麻烦给个赞和在看~  

3D视觉工坊 CSDN认证博客专家 算法 3D视觉
个人公众号:3D视觉工坊。公众号特邀嘉宾及合伙人,先后就职于国内知名研究机构、自动驾驶公司、海康研究院,主要研究方向为深度学习、目标检测、语义分割、图像处理、自动驾驶感知算法等,CSDN博客专家。博主先后任职于国内知名研究院、知名大厂,致力于3D视觉算法、VLAM算法开发,涉及相机标定、手眼标定、结构光、点云后处理、三维重建等相关领域的研究,同时也是CSDN博客专家。3D视觉工坊坚持原创,近一年来输出了非常多的高质量文章,获得了粉丝的一致好评,我们将始终坚持走原创路线,打造一个铁杆粉丝的聚集区。
已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 书香水墨 设计师:CSDN官方博客 返回首页
实付 49.90元
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值