基于视觉惯性里程计的无监督深度补全方法

标题:Unsupervised Depth Completion From Visual Inertial Odometry

作者:Alex Wong , Xiaohan Fei , Stephanie Tsuei , and Stefano Soatto

来源:2020 IEEE International Conference on Robotics and Automation (ICRA)

编译:林只只

审核:柴毅,王靖淇

转载:泡泡机器人SLAM

摘要

       本文介绍了一种可以由相机运动和稀疏深度推断出稠密深度的方法,使用视觉惯性里程计系统估算深度。与使用来自激光雷达或结构化光传感器的点云的其他方案不同,我们只有几百到几千个点,不足以获得场景拓扑。我们的方法首先构造场景的分段平面脚手架,然后使用它与图像以及稀疏点一起推断密集深度。我们使用类似于“自我监督”的预测性交叉模态准则,跨时间测量光度一致性,前后姿势一致性以及与稀疏点云的几何兼容性。我们还展示了第一个视觉惯性+深度数据集,我们希望它能够对相关研究有所帮助,结合视觉和惯性传感器的互补优势。为了将我们的方法与先前的工作进行比较,我们采用了无监督的KITTI深度补全基准,在该基准中,我们获得了最先进的性能。

图1 在提出的VIO数据集上使用视觉惯性里程计(VIO)进行深度补全(最好以5X的彩色观看)。左下:来自VIO的稀疏重建(蓝色)和摄像机轨迹(黄色)。高亮显示的区域被压缩并在右上方放大。左上方显示的是同一区域的图像作为输入,并通过我们的方法与稀疏深度图像融合。右下角的同一视图仅显示稀疏点,不足以确定场景的几何形状和拓扑。

图2 系统图(最好以5X彩色观看)。我们首先根据VIO估计的稀疏深度来构建基架。然后将基架与图像一起作为输入送入调整网络以产生输出。注意:位姿网络(蓝色)仅在一种操作模式下需要,并且仅在训练中使用。在其他操作模式下,将使用VIO位姿。基架模块(红色)不需要参数,这使我们采用轻量级的两阶段方法。

图3 学习调整过程(最好以5X彩色观看)。我们的网络学习调整输入基架。绿色矩形区域标出了在训练过程中用于比较的区域。网络先学习拷贝输入,接着学习融合RGB图像的信息以调整来自基架的近似深度(请参阅第1行行人和第2行路牌)。

图4 对KITTI基准进行定性评估。从上到下:输入图像和稀疏深度,[1]的结果,我们的结果。结果取自KITTI在线测试服务器。误差图中的暖色表示较高的误差。绿色矩形突出显示区域以进行详细比较。我们总体上表现更好,特别是在薄的结构和较远的区域。[1]显示出了与扫描线相似的伪影,并且在较远的区域显示了“圆圈”(用红色突出显示)。

图5 在TUM-VI上的定性结果(最好以2X彩色观看)。我们将方法应用于TUM-VI,并使用密度级别为0.015%的稀疏深度输入获得了结果。与KITTI和VOID不同,TUM-VI图像是单色的,并带有高度失真的鱼眼镜头相机模型,该模型在训练中得到了补偿。彩条显示深度范围。

图6 我们的模型在KITTI上的误差特征。横坐标表示用Velodyne测量的稀疏数据点的距离,其中所有数据点的百分比以红色显示;蓝色曲线显示了给定距离处估计深度的平均绝对误差,其中第5个和第95个百分位数围住了浅蓝色区域。

图7 VOID基准上的定性评估。上:输入的RGB图像。下:稠密深度图像反向投影为3D,从另一个视角上色与观测。

图8 VOID数据集上的RGB+D图像示例(最好以5X色彩观看)。彩条显示了深度范围。

表1 误差指标

表2 KITTI深度补全基准

表3 KITTI深度补全消融实验

表4 VOID深度补全基准和消融实验

表5 在VOID不同的稀疏深度稠密度上的深度补全

Abstract

    We describe a method to infer dense depth from camera motion and sparse depth as estimated using a visual-inertial odometry system. Unlike other scenarios using point clouds from lidar or structured light sensors, we have few hundreds to few thousand points, insufficient to inform the topology of the scene. Our method first constructs a piecewise planar scaffolding of the scene, and then uses it to infer dense depth using the image along with the sparse points. We use a predictive cross-modal criterion, akinto “self-supervision,” measuring photometric consistency across time, forward-backward pose consistency, and geometric compatibility with the sparse point cloud. We also present the first visual-inertial + depth dataset, which we hope will foster additional exploration into combining the complementary strengths of visual and inertial sensors. To compare our method to prior work, we adopt the unsupervised KITTI depth completion benchmark, where we achieve state-of-the-art performance.

本文仅做学术分享,如有侵权,请联系删文。

下载1

在「3D视觉工坊」公众号后台回复:3D视觉即可下载 3D视觉相关资料干货,涉及相机标定、三维重建、立体视觉、SLAM、深度学习、点云后处理、多视图几何等方向。

下载2

在「3D视觉工坊」公众号后台回复:3D视觉github资源汇总即可下载包括结构光、标定源码、缺陷检测源码、深度估计与深度补全源码、点云处理相关源码、立体匹配源码、单目、双目3D检测、基于点云的3D检测、6D姿态估计源码汇总等。

下载3

在「3D视觉工坊」公众号后台回复:相机标定即可下载独家相机标定学习课件与视频网址;后台回复:立体匹配即可下载独家立体匹配学习课件与视频网址。

重磅!3DCVer-学术论文写作投稿 交流群已成立

扫码添加小助手微信,可申请加入3D视觉工坊-学术论文写作与投稿 微信交流群,旨在交流顶会、顶刊、SCI、EI等写作与投稿事宜。

同时也可申请加入我们的细分方向交流群,目前主要有3D视觉CV&深度学习SLAM三维重建点云后处理自动驾驶、多传感器融合、CV入门、三维测量、VR/AR、3D人脸识别、医疗影像、缺陷检测、行人重识别、目标跟踪、视觉产品落地、视觉竞赛、车牌识别、硬件选型、学术交流、求职交流、ORB-SLAM系列源码交流、深度估计等微信群。

一定要备注:研究方向+学校/公司+昵称,例如:”3D视觉 + 上海交大 + 静静“。请按照格式备注,可快速被通过且邀请进群。原创投稿也请联系。

▲长按加微信群或投稿

▲长按关注公众号

3D视觉从入门到精通知识星球:针对3D视觉领域的知识点汇总、入门进阶学习路线、最新paper分享、疑问解答四个方面进行深耕,更有各类大厂的算法工程人员进行技术指导。与此同时,星球将联合知名企业发布3D视觉相关算法开发岗位以及项目对接信息,打造成集技术与就业为一体的铁杆粉丝聚集区,近3000星球成员为创造更好的AI世界共同进步,知识星球入口:

学习3D视觉核心技术,扫描查看介绍,3天内无条件退款

 圈里有高质量教程资料、可答疑解惑、助你高效解决问题

觉得有用,麻烦给个赞和在看~  

3D视觉工坊 CSDN认证博客专家 算法 3D视觉
个人公众号:3D视觉工坊。公众号特邀嘉宾及合伙人,先后就职于国内知名研究机构、自动驾驶公司、海康研究院,主要研究方向为深度学习、目标检测、语义分割、图像处理、自动驾驶感知算法等,CSDN博客专家。博主先后任职于国内知名研究院、知名大厂,致力于3D视觉算法、VLAM算法开发,涉及相机标定、手眼标定、结构光、点云后处理、三维重建等相关领域的研究,同时也是CSDN博客专家。3D视觉工坊坚持原创,近一年来输出了非常多的高质量文章,获得了粉丝的一致好评,我们将始终坚持走原创路线,打造一个铁杆粉丝的聚集区。
已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 书香水墨 设计师:CSDN官方博客 返回首页
实付 49.90元
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值