CVPR2021|基于分类深度分布网络的单目3D物体检测

1.要解决的问题

单目3D物体检测核心问题是如何准确估计物体的深度信息。已有方法尝试显式地或隐式地学习深度信息。

显式地学习存在的问题:1:深度估计的过度置信。一些方法[14,38,39,62]通过深度估计网络在一个单独阶段显式学习深度信息,但是后续的3D检测模块在没有考虑深度置信度的问题的情况下直接利用估计的深度图,会导致网络深度估计中的过度置信问题。2:非End-to-End。为了防止3D检测任务影响深度图的估计效果,3D检测模块与深度估计模块一般需要分开训练。

隐式地学习存在的问题:1:特征拖尾效应。[50,46]直接将特征从图像空间转换至3D空间,最后转换至鸟瞰角度,会导致特征拖尾效应(feature smearing effects,即3D投影空间中的多个位置会出现相似的图像特征),进而会增加物体定位难度。

作者想要获取具有高质量(即弱特征拖尾效应)的鸟瞰特征实现端到端的3D物体检测,那么如何获取高质量的鸟瞰特征?

2.提出的方法

提出了分类深度分布网络(CADDN):引入深度监督信号,预测逐像素的分类深度分布,将丰富的上下文特征信息投影到3D空间中的适当位置࿰

3D视觉工坊 CSDN认证博客专家 算法 3D视觉
个人公众号:3D视觉工坊。公众号特邀嘉宾及合伙人,先后就职于国内知名研究机构、自动驾驶公司、海康研究院,主要研究方向为深度学习、目标检测、语义分割、图像处理、自动驾驶感知算法等,CSDN博客专家。博主先后任职于国内知名研究院、知名大厂,致力于3D视觉算法、VLAM算法开发,涉及相机标定、手眼标定、结构光、点云后处理、三维重建等相关领域的研究,同时也是CSDN博客专家。3D视觉工坊坚持原创,近一年来输出了非常多的高质量文章,获得了粉丝的一致好评,我们将始终坚持走原创路线,打造一个铁杆粉丝的聚集区。
已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 书香水墨 设计师:CSDN官方博客 返回首页
实付 49.90元
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值