CVPR 2021|三维视觉相关论文汇总

作者丨Tom Hardy@知乎

来源丨https://zhuanlan.zhihu.com/p/355149511

编辑丨3D视觉工坊

1、GDR-Net: Geometry-Guided Direct Regression Network forMonocular 6D Object Pose Estimation

paper链接:https://arxiv.org/pdf/2102.12145.pdf

源码链接:https://github.com/THU-DA-6D-Pose-Group/GDR-Net

从单个RGB图像中进行6D姿态估计是计算机视觉中的一项重要任务。目前最先进的基于深度学习的方法依赖于一种间接的策略,即首先在图像平面坐标系和目标坐标系之间建立2D-3D的对应关系,然后应用PnP/RANSAC算法的变体。然而,这种两级pipeline不是端到端可训练的,因此很难用于许多需要微分姿态的任务。另一方面,目前基于直接回归的方法不如基于几何的方法。在这项工作中,我们对直接和间接方法进行了深入的研究,并提出了一种简单而有效的几何引导直接回归网络(GDR-Net)来从基于密集对应的中间几何表示中以端到端的方式学习6D姿态。大量实验表明,在LM、LM-O和YCB-V数据集上,我们的方法明显优于最先进的方法。

2、Robust Neural Routing Through Space Partitions for Camera Relocalization in Dynamic Indoor Environments

paper链接:https://arxiv.org/pdf/2012.04746.pdf

在已知的室内环境中定位摄像机是场景映射、机器人导航、AR等的关键构建块。最新进展通过优化2D/3D摄像机空间和3D世界空间坐标之间建立的2D/3D-3D对应关系来估计摄像机姿态。这种映射可以用一个进化神经网络或一个仅使用静态输入图像序列的决策树来估计,这使得这些方法不适用于在现实世界中非常常见但具有挑战性的动态室内环境。为了解决上述问题,本文提出了一种新的感知神经树,它将深度学习和决策树两种方法联系起来。

3、PointGuard: Provably Robust 3D Point Cloud Classification

paper链接:https://arxiv.org/pdf/2103.03046.pdf

三维点云分类在自动驾驶、机器人抓取等领域有着广泛的应用。然而,一些研究表明它很容易受到攻击。特别是,攻击者可以通过小心地修改、添加和/或删除少量点云的点,使分类器预测三维点云的错误标签。随机平滑技术是建立可靠的二维图像的最新技术分类器。但是,当应用于三维点云分类时,随机平滑只能证明对不同修改点的鲁棒性 在这项工作中,我们提出了PointGuard,这是第一种针对对手修改、添加和/或删除的点具有可证明的健壮性保证的防御机制。

4、Towards Semantic Segmentation of Urban-Scale 3D Point Clouds: A Dataset, Benchmarks and Challenges

5、SpinNet: Learning a General Surface Descriptor for 3D Point Cloud Registration

paper链接:https://www.researchgate.net/publication/346303058_SpinNet_Learning_a_General_Surface_Descriptor_for_3D_Point_Cloud_Registration_CVPR_2021

通过深度学习网络学习3D点云匹配所需的表面描述符

6、MultiBodySync: Multi-Body Segmentation and Motion Estimation via 3D Scan Synchronization

paper链接:https://arxiv.org/pdf/2101.06605.pdf

论文提出了一种新颖的、端到端可训练的多体运动分割和多输入三维点云刚性配准框架MultiBodySync。

7、Diffusion Probabilistic Models for 3D Point Cloud Generation

paper链接:https://arxiv.org/abs/2103.01458

论文提出了一个点云生成的概率模型,它对于各种三维视觉任务(如形状补全、上采样、合成和数据增强)至关重要。

8、Style-based Point Generator with Adversarial Rendering for Point Cloud Completion

paper链接:https://arxiv.org/abs/2103.02535

在本文中,我们提出了一种新的基于风格的点生成器(SpareNet)与Adversarial Rendering (SpareNet) for point cloud completion。

9、PREDATOR: Registration of 3D Point Clouds with Low Overlap

paper链接:https://arxiv.org/pdf/2011.13005.pdf

10、PCLs: Geometry-aware Neural Reconstruction of 3D Pose with Perspective Crop Layers

paper链接:https://arxiv.org/abs/2011.13607

局部处理是CNN和其他神经网络结构的一个基本特征,这也是为什么它们在相关信息在很大程度上是局部的图像上工作得如此好的原因之一。然而,传统相机中的投影产生的透视效果因图像中不同的全局位置而不同。论文引入了透视裁剪层(Perspective Crop Layers,PCLs),这是一种基于摄像机几何结构的感兴趣区域透视裁剪的形式,并表明考虑透视可以持续地提高最先进的三维姿态重建方法的精度。

本文仅做学术分享,如有侵权,请联系删文。

下载1

在「3D视觉工坊」公众号后台回复:3D视觉即可下载 3D视觉相关资料干货,涉及相机标定、三维重建、立体视觉、SLAM、深度学习、点云后处理、多视图几何等方向。

下载2

在「3D视觉工坊」公众号后台回复:3D视觉github资源汇总即可下载包括结构光、标定源码、缺陷检测源码、深度估计与深度补全源码、点云处理相关源码、立体匹配源码、单目、双目3D检测、基于点云的3D检测、6D姿态估计源码汇总等。

下载3

在「3D视觉工坊」公众号后台回复:相机标定即可下载独家相机标定学习课件与视频网址;后台回复:立体匹配即可下载独家立体匹配学习课件与视频网址。

重磅!3DCVer-学术论文写作投稿 交流群已成立

扫码添加小助手微信,可申请加入3D视觉工坊-学术论文写作与投稿 微信交流群,旨在交流顶会、顶刊、SCI、EI等写作与投稿事宜。

同时也可申请加入我们的细分方向交流群,目前主要有3D视觉CV&深度学习SLAM三维重建点云后处理自动驾驶、多传感器融合、CV入门、三维测量、VR/AR、3D人脸识别、医疗影像、缺陷检测、行人重识别、目标跟踪、视觉产品落地、视觉竞赛、车牌识别、硬件选型、学术交流、求职交流、ORB-SLAM系列源码交流、深度估计等微信群。

一定要备注:研究方向+学校/公司+昵称,例如:”3D视觉 + 上海交大 + 静静“。请按照格式备注,可快速被通过且邀请进群。原创投稿也请联系。

▲长按加微信群或投稿

▲长按关注公众号

3D视觉从入门到精通知识星球:针对3D视觉领域的知识点汇总、入门进阶学习路线、最新paper分享、疑问解答四个方面进行深耕,更有各类大厂的算法工程人员进行技术指导。与此同时,星球将联合知名企业发布3D视觉相关算法开发岗位以及项目对接信息,打造成集技术与就业为一体的铁杆粉丝聚集区,近3000星球成员为创造更好的AI世界共同进步,知识星球入口:

学习3D视觉核心技术,扫描查看介绍,3天内无条件退款

 圈里有高质量教程资料、可答疑解惑、助你高效解决问题

觉得有用,麻烦给个赞和在看~  

3D视觉工坊 CSDN认证博客专家 算法 3D视觉
个人公众号:3D视觉工坊。公众号特邀嘉宾及合伙人,先后就职于国内知名研究机构、自动驾驶公司、海康研究院,主要研究方向为深度学习、目标检测、语义分割、图像处理、自动驾驶感知算法等,CSDN博客专家。博主先后任职于国内知名研究院、知名大厂,致力于3D视觉算法、VLAM算法开发,涉及相机标定、手眼标定、结构光、点云后处理、三维重建等相关领域的研究,同时也是CSDN博客专家。3D视觉工坊坚持原创,近一年来输出了非常多的高质量文章,获得了粉丝的一致好评,我们将始终坚持走原创路线,打造一个铁杆粉丝的聚集区。
已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 书香水墨 设计师:CSDN官方博客 返回首页
实付 49.90元
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值