多视图立体匹配论文分享 | Fast-MVSNet (CVPR2020)

论文题目:Fast-MVSNet: Sparse-to-Dense Multi-View Stereo with Learned Propagation and Gauss-Newton Refinement

代码地址:在公众号「3D视觉工坊」,后台回复「Fast-MVSNet」,即可直接下载。

摘要:

以往基于深度学习的多视图立体匹配 (MVS) 方法几乎都是为了提高重建质量。除了重建质量,效率也是现实场景中重建的一个重要特征。为此,本文提出Fast-MVSNet,一种新的由稀疏到稠密、由粗糙到精细的框架,用于快速和准确的多视图深度估计。具体而言,在Fast-MVSNet中,我们首先构造一个稀疏的代价体来学习一个稀疏但高分辨率的深度图。然后我们利用小型卷积神经网络对局部区域内像素的深度依赖进行编码,以稠密化稀疏但高分辨率的深度图。最后提出简单且有效的高斯-牛顿层来进一步优化深度图。一方面,高分辨率的深度图、数据驱动的自适应传播方法和高斯-牛顿层保证了算法的有效性。另一方面,Fast-MVSNet中所有模块都是轻量级的,因此保证了算法的高效性。此外由于稀疏深度图的表示,我们方法也是memory-friendly的。实验结果表明Fast-MVSNet比Point-MVSNet快5倍,比R-MVSNet快14倍,同时在Tanks and Temples的DTU上取得了可比较甚至更好的结果。

3D视觉工坊 CSDN认证博客专家 算法 3D视觉
个人公众号:3D视觉工坊。公众号特邀嘉宾及合伙人,先后就职于国内知名研究机构、自动驾驶公司、海康研究院,主要研究方向为深度学习、目标检测、语义分割、图像处理、自动驾驶感知算法等,CSDN博客专家。博主先后任职于国内知名研究院、知名大厂,致力于3D视觉算法、VLAM算法开发,涉及相机标定、手眼标定、结构光、点云后处理、三维重建等相关领域的研究,同时也是CSDN博客专家。3D视觉工坊坚持原创,近一年来输出了非常多的高质量文章,获得了粉丝的一致好评,我们将始终坚持走原创路线,打造一个铁杆粉丝的聚集区。
已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 书香水墨 设计师:CSDN官方博客 返回首页
实付 49.90元
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值