浅析相机标定

点击上方“3D视觉工坊”,选择“星标”

干货第一时间送达

在我们进行机械臂抓取实验时候,总是少不了相机的标定环节。我认为相机标定可以分为两个部分。


一个部分是相机外参的标定,也就是获得相机坐标系与世界坐标系的关系,在我们的系统中,世界坐标系是可以自定义的。其中眼在手上的标定,不变的是相机与机械臂末端的坐标转换。通过手眼标定获得这两者的转换,结合机械臂TF树,便可以相机坐标与机械臂基座标的变换,进而获得相机坐标与世界坐标系的变换。而眼在手外的相机标定可以直接获得相机坐标与机械臂基座标的变换,进而获得相机坐标与世界坐标的关系,完成相机外参标定过程。

另一部分是相机内参的标定,之前有在matlab环境下进行相机的内参标定,那么为什么要进行内参标定呢?其实这里的相机标定主要为了解决空间中物体表面的三维几何点与其相对应的图像点的转换关系。下面我将介绍一下相机内参标定的原理,通过介绍可以理解为什么进行内参标定。

相机成像模型

相机的成像过程是将三维空间中的物体投影到二维图像空间的,即透视投影变换,也被称之为小孔成像。相机的成像模型涉及像素坐标系、图像坐标系、相机坐标系以及世界坐标系之间的坐标转换关系,各坐标系如图所示。

相机模型坐标定义

像素坐标系u,v轴组成,位于像素平面上,其原点位于图像左上角,单位为像素。


图像坐标系x,y轴组成,位于成像平面上,原点在在成像平面的中心点附近,单位为物理单位(如 mm)。


相机坐标系 X,Y,Z轴组成,原点为光心,单位为物理单位。


世界坐标系 Xw ,Yw, Zw 组成,是实际三维空间中的坐标系,根据使用需要进行定义,是用于表示系统中绝对位置的坐标系,单位为物理单位(如 mm)。

像素与图像坐标转换

像素坐标系和图像坐标系之间的转换关系可以通过单个像素的物理尺寸来关联:

其中, dx和dy表示沿x和y轴方向上单个像素点的实际物理尺寸,与感光芯片有关, (u0,v0)为原点o1在像素坐标系下的坐标值。将上式用齐次坐标系表示:

相机与世界坐标转换

通过相机的外参标定,世界坐标系下的坐标可以通过旋转矩阵R和平移向量t转换到相机坐标系下:

式中矩阵R为 3×3的正交单位阵,向量t表示3×1的三维平移量。

相机与图像坐标转换

对于三维空间中的一点P,其对应在图像平面上的成像点为P与光心O的连线与图像平面的交点 p,O与o1之间的距离为焦距f 。根据三角形相似定理可以推出相机坐标系与图像坐标的关系满足以下关系:

将上式用齐次坐标系表示:

像素与世界坐标转换

将式5和式5带入式2中可以计算出世界坐标系下的一点 P(Xw , Yw , Zw) 在像素坐标系下的成像点 p(u,v) :

畸变

其中, Fx 和 Fy 被称为等效焦距, M1为相机内参只与相机内部结构有关, M2为相机外参表示相机坐标系与世界坐标系之间的转换。


上述的相机模型为理想条件下的相机成像模型,而实际的成像过程往往存在偏差,即畸变。畸变又可以进一步划分为径向畸变以及切向畸变,径向畸变来源于相机透镜在制造过程中的误差,而切向畸变则来源于整个相机的组装误差。


产生两者畸变的原理图:

径向畸变矫正的表达式为:

其中,r 为图像坐标 (x, y) 到其原点的欧式距离, k1 、 k2 和 k3 为畸变系数。


径向畸变包括:枕形畸变、桶形畸变

切向畸变矫正的表达式为:

其中, p1和p2为畸变系数。


k1 、k2 、k3 、p1 、p2 和 M1共同构成了相机的内参。

切向畸变图示:

(本文经授权转载自CSDN,作者光头明明,编辑:古月居。)

本文仅做学术分享,如有侵权,请联系删文。

下载1

在「3D视觉工坊」公众号后台回复:3D视觉即可下载 3D视觉相关资料干货,涉及相机标定、三维重建、立体视觉、SLAM、深度学习、点云后处理、多视图几何等方向。

下载2

在「3D视觉工坊」公众号后台回复:3D视觉github资源汇总即可下载包括结构光、标定源码、缺陷检测源码、深度估计与深度补全源码、点云处理相关源码、立体匹配源码、单目、双目3D检测、基于点云的3D检测、6D姿态估计源码汇总等。

下载3

在「3D视觉工坊」公众号后台回复:相机标定即可下载独家相机标定学习课件与视频网址;后台回复:立体匹配即可下载独家立体匹配学习课件与视频网址。

重磅!3DCVer-学术论文写作投稿 交流群已成立

扫码添加小助手微信,可申请加入3D视觉工坊-学术论文写作与投稿 微信交流群,旨在交流顶会、顶刊、SCI、EI等写作与投稿事宜。

同时也可申请加入我们的细分方向交流群,目前主要有3D视觉CV&深度学习SLAM三维重建点云后处理自动驾驶、多传感器融合、CV入门、三维测量、VR/AR、3D人脸识别、医疗影像、缺陷检测、行人重识别、目标跟踪、视觉产品落地、视觉竞赛、车牌识别、硬件选型、学术交流、求职交流、ORB-SLAM系列源码交流、深度估计等微信群。

一定要备注:研究方向+学校/公司+昵称,例如:”3D视觉 + 上海交大 + 静静“。请按照格式备注,可快速被通过且邀请进群。原创投稿也请联系。

▲长按加微信群或投稿

▲长按关注公众号

3D视觉从入门到精通知识星球:针对3D视觉领域的知识点汇总、入门进阶学习路线、最新paper分享、疑问解答四个方面进行深耕,更有各类大厂的算法工程人员进行技术指导。与此同时,星球将联合知名企业发布3D视觉相关算法开发岗位以及项目对接信息,打造成集技术与就业为一体的铁杆粉丝聚集区,近2000星球成员为创造更好的AI世界共同进步,知识星球入口:

学习3D视觉核心技术,扫描查看介绍,3天内无条件退款

 圈里有高质量教程资料、可答疑解惑、助你高效解决问题

觉得有用,麻烦给个赞和在看~  

3D视觉工坊 CSDN认证博客专家 算法 3D视觉
个人公众号:3D视觉工坊。公众号特邀嘉宾及合伙人,先后就职于国内知名研究机构、自动驾驶公司、海康研究院,主要研究方向为深度学习、目标检测、语义分割、图像处理、自动驾驶感知算法等,CSDN博客专家。博主先后任职于国内知名研究院、知名大厂,致力于3D视觉算法、VLAM算法开发,涉及相机标定、手眼标定、结构光、点云后处理、三维重建等相关领域的研究,同时也是CSDN博客专家。3D视觉工坊坚持原创,近一年来输出了非常多的高质量文章,获得了粉丝的一致好评,我们将始终坚持走原创路线,打造一个铁杆粉丝的聚集区。
已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 书香水墨 设计师:CSDN官方博客 返回首页
实付 49.90元
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值