谁是全球最顶级AI实验室?

点击上方“3D视觉工坊”,选择“星标”

干货第一时间送达

来源丨cnbc

编辑丨极市平台

美国的大型科技公司如谷歌、 Facebook、亚马逊、苹果和微软,在过去十年里都建立了专门的人工智能实验室。

如果问AI研究人员世界上最顶级的AI实验室是哪个?

很多人无法给出答案,但说到前三名大家几乎可以给出一致意见:DeepMind、OpenAI和FAIR。

这三家顶级AI实验室分别背靠谷歌、微软和Facebook,同时这三家实验室是纯AI研究实验室,Alphabet每年都会给DeepMind拨款数亿美元,微软在OpenAI创始投资者10亿美元的基础上也投资了10亿美元,Facebook未对 FAIR的投资资金进行分类,但也是耗资不菲。

 「从名声上说,DeepMind、 OpenAI 和 FAIR是前三名」,乔治亚理工大学交互计算学院的副教授马克 · 里德尔如此说道。

还有一位匿名的专家表示,DeepMind,OpenAI 和 FAIR 可能是已知资金最多的三个纯人工智能研究实验室,同时他还在提到中国的科技巨头时说,百度和腾讯的实验室情况如何还未可知。

DeepMind

DeepMind是一家英国的人工智能公司。公司创建于2010年,最初名称是DeepMind科技(DeepMind Technologies Limited),在2014年被谷歌收购。

DeepMind 最出名的是 AlphaGo ,它在围棋游戏中挑战并击败了世界上最好的人类棋手,甚至还有一部关于 AlphaGo 战胜韩国围棋传奇李世石的 Netflix 纪录片。

该公司目前正致力于利用人工智能解决人类最大的科学难题,去年年底,该公司在称为蛋白质折叠的生物学领域取得了突破:在有「蛋白质奥林匹克竞赛」称呼的国际蛋白质结构预测竞赛(CASP)上,AlphaFold 击败了其余的参会选手,能够精确地基于氨基酸序列,预测蛋白质的3D结构。

DeepMind于2014年开始开发人工智能围棋软件AlphaGo。

2015年10月,分布式版AlphaGo分先以5:0击败了欧洲围棋冠军、华裔法籍职业棋士樊麾二段。这是电脑围棋程序第一次在十九路棋盘且分先的情况下击败职业围棋棋手。

2016年3月,AlphaGo挑战世界冠军韩国职业棋士李世乭九段,对弈结果为AlphaGo 4:1战胜了李世乭。

2019年1月25日,DeepMind人工智能AlphaStar在《星海争霸II》以10:1战胜人类职业玩家。

2020年12月23日,DeepMind公布其AI 算法MuZero。

OpenAI

OpenAI成立于2015年底,总部位于旧金山,其创始人伊隆·马斯克以及萨姆·奥特曼最初成立它的动机是出于对强人工智能潜在风险的担忧。在成立短短五年的时间后,它就已经成为世界领先的人工智能研究实验室之一,最重要的是,它因其使命而受到大众的推崇:目标是第一个创造AGI——一种具有人类思维的学习和推理能力的机器。而且该实验室希望将其利益平均分配给全世界。

OpenAI 还开发了游戏人工智能软件,可以在 Dota II 等游戏中击败人类。然而,它更为出名的则是GPT-3和人工智能图像生成器 DALL-E。

DALL-E是一个基于Transformer的语言模型,使用了GPT-3的120亿参数版本。它同时接收文本和图像作为单一数据流,其中包含多达1280个token,并使用最大似然估计来进行训练,以一个接一个地生成所有的token。这个训练过程不仅允许DALL-E可以从头开始生成图像,而且还可以重新生成现有图像的任何矩形区域,与文本提示内容基本一致。

FAIR

FAIR本身并没有像 AlphaGo 和 GPT-3那样著名的模型和应用,但是它的团队已经在 Facebook 本身感兴趣的领域发表了学术论文,包括计算机视觉、自然语言处理和对话型AI等。

成立FAIR的想法开始于 2013 年,Facebook的创始人扎克伯格,首席技术官 Mike Schroepfer 以及公司其他持有股票的领导,都在寻找着未来 10 到 20 年让公司保持竞争力的技术。

Facebook 此前已经使用了机器学习技术,在它们的社交网络上决定用户会看到什么样的消息流,但相比最前沿的神经网络模型来说,这还是比较简单的事情。

当时一些 Facebook 的工程师们也在一直尝试卷积神经网络(CNNs),这是机器学习领域一个强大的方法,现在则普遍用于图像领域中。扎克伯格对人工智能的潜力印象极其深刻,即便是在早期阶段,所以他从 Google Brain 雇佣了一名工程师 Marc’Aurelio Ranzato。然后,他又找到了卷积神经网络的创造者:Yann LeCun。

在担任Facebook人工智能实验室负责人期间,他曾谈到Facebook的人工智能布局,并把组织结构定义为以下架构:

AI at Facebook = FAIR + Applied Machine Learning + Product Groups

即包含了:

1.FAIR,Facebook 人工智能实验室

2.Applied Machine Learning,应用机器学习部门

3.Product Groups,产品部署团队

不过之后他卸任了 Facebook 人工智能研究院(FAIR)院长一职,并转为担任首席 AI 科学家,专心从事研究工作。

衡量人工智能实验室影响力的其中一种方法就是看它在两个人工智能会议上发表了多少学术论文: NeurIPS 和 ICML。

2020年,谷歌有178篇论文被 NeurIPS 接收并发表,Microsft 有95篇,DeepMind 有59篇,Facebook 有58篇,IBM 有38篇,而亚马逊只有不到30篇。

同年在ICML上,谷歌有114篇论文被接收并发表,DeepMind 有51篇,微软有49篇,Facebook 有34篇,IBM 有19篇,亚马逊有18篇。

是真TOP3,还是强公关?

人工智能一直被誉为一种有潜力带来新的工业革命并改变世界的技术。但至少就目前而言,它仍处于相对初级的阶段,能力也「有限」。例如,一个能够达到超人级别的国际象棋的AI就不知道如何制作煎蛋卷。

因此,也有人认为DeepMind、 OpenAI 和 FAIR 被广泛认为是排名前三的实验室,部分原因是「强大的公关游戏」。

微软研究院进行了大量人工智能的研究工作,完全可以进入顶级的行列。此外,Salesforce、亚马逊、 IBM也都有一些实力雄厚的研究项目,但同样没有成功进入前三名。

亚马逊前机器学习主任尼尔 · 劳伦斯表示,亚马逊没有一个大型的、集中化的人工智能研究实验室,因为它更专注于将技术带给客户,「如果要以(学术)出版物作为衡量标准,那么它就没有排名」。

此外,尽管这个排名并不关注大学的人工智能实验室,但是专家们认为斯坦福大学、麻省理工学院、加州大学伯克利分校、卡内基梅隆大学以及剑桥大学、伦敦大学学院和伦敦帝国理工学院都很强大。

参考链接:

https://www.cnbc.com/2021/01/21/deepmind-openai-fair-ai-researchers-rank-the-top-ai-labs-worldwide.html

本文仅做学术分享,如有侵权,请联系删文。

下载1

在「3D视觉工坊」公众号后台回复:3D视觉即可下载 3D视觉相关资料干货,涉及相机标定、三维重建、立体视觉、SLAM、深度学习、点云后处理、多视图几何等方向。

下载2

在「3D视觉工坊」公众号后台回复:3D视觉github资源汇总即可下载包括结构光、标定源码、缺陷检测源码、深度估计与深度补全源码、点云处理相关源码、立体匹配源码、单目、双目3D检测、基于点云的3D检测、6D姿态估计源码汇总等。

下载3

在「3D视觉工坊」公众号后台回复:相机标定即可下载独家相机标定学习课件与视频网址;后台回复:立体匹配即可下载独家立体匹配学习课件与视频网址。

重磅!3DCVer-学术论文写作投稿 交流群已成立

扫码添加小助手微信,可申请加入3D视觉工坊-学术论文写作与投稿 微信交流群,旨在交流顶会、顶刊、SCI、EI等写作与投稿事宜。

同时也可申请加入我们的细分方向交流群,目前主要有3D视觉CV&深度学习SLAM三维重建点云后处理自动驾驶、多传感器融合、CV入门、三维测量、VR/AR、3D人脸识别、医疗影像、缺陷检测、行人重识别、目标跟踪、视觉产品落地、视觉竞赛、车牌识别、硬件选型、学术交流、求职交流、ORB-SLAM系列源码交流、深度估计等微信群。

一定要备注:研究方向+学校/公司+昵称,例如:”3D视觉 + 上海交大 + 静静“。请按照格式备注,可快速被通过且邀请进群。原创投稿也请联系。

▲长按加微信群或投稿

▲长按关注公众号

3D视觉从入门到精通知识星球:针对3D视觉领域的知识点汇总、入门进阶学习路线、最新paper分享、疑问解答四个方面进行深耕,更有各类大厂的算法工程人员进行技术指导。与此同时,星球将联合知名企业发布3D视觉相关算法开发岗位以及项目对接信息,打造成集技术与就业为一体的铁杆粉丝聚集区,近2000星球成员为创造更好的AI世界共同进步,知识星球入口:

学习3D视觉核心技术,扫描查看介绍,3天内无条件退款

 圈里有高质量教程资料、可答疑解惑、助你高效解决问题

觉得有用,麻烦给个赞和在看~  

3D视觉工坊 CSDN认证博客专家 算法 3D视觉
个人公众号:3D视觉工坊。公众号特邀嘉宾及合伙人,先后就职于国内知名研究机构、自动驾驶公司、海康研究院,主要研究方向为深度学习、目标检测、语义分割、图像处理、自动驾驶感知算法等,CSDN博客专家。博主先后任职于国内知名研究院、知名大厂,致力于3D视觉算法、VLAM算法开发,涉及相机标定、手眼标定、结构光、点云后处理、三维重建等相关领域的研究,同时也是CSDN博客专家。3D视觉工坊坚持原创,近一年来输出了非常多的高质量文章,获得了粉丝的一致好评,我们将始终坚持走原创路线,打造一个铁杆粉丝的聚集区。
已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 书香水墨 设计师:CSDN官方博客 返回首页
实付 49.90元
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值