BAD SLAM | 直接法实时BA+RGBD基准数据集(CVPR2019)

论文解读:BAD SLAM | 直接法实时BA+RGBD基准数据集(CVPR2019)

本文解读的论文为发表于CVPR 2019的 "Schops, Thomas, Torsten Sattler, and Marc Pollefeys. Bad slam: Bundle adjusted direct rgb-d slam. Proceedings of the IEEE conference on computer vision and pattern recognition. 2019."

虽然这篇论文的主要创新是对SLAM中优化步骤中常用的Bundle Adjustment算法进行改进,本篇文章对BAD SLAM整个SLAM系统进行了介绍,对SLAM中常见的前后端架构,以及其中涉及到的每个步骤都有简单的介绍,利于读者对SLAM系统有大概的认知。

这篇论文还建立了一个RGB-D SLAM的基准数据集,由于论文中提到的它相对于RGB-D SLAM领域常用数据集TUM RGB-D在硬件、评测设置等方面的优越性,该论文的数据集也是RGB-D SLAM领域研究者值得关注、使用的数据集。

主要贡献

  • 提出一个快速的直接法的BA,用于RGB-D SLAM系统中,一个GPU就可以实现实时性能,且效果性能超过其他现有系统

  • 建立并公开了一个RGB-D SLAM的基准数据集,相比以往的数据集,主要优势是数据在采集时就保障了高度同步性,且消除了卷帘快门的影响;此外还在项目官网www.eth3d.net上建立一个排行榜,保留了一部分测试数据没有公开,专门用于测试不同算法的性能

背景介绍

<
3D视觉工坊 CSDN认证博客专家 算法 3D视觉
个人公众号:3D视觉工坊。公众号特邀嘉宾及合伙人,先后就职于国内知名研究机构、自动驾驶公司、海康研究院,主要研究方向为深度学习、目标检测、语义分割、图像处理、自动驾驶感知算法等,CSDN博客专家。博主先后任职于国内知名研究院、知名大厂,致力于3D视觉算法、VLAM算法开发,涉及相机标定、手眼标定、结构光、点云后处理、三维重建等相关领域的研究,同时也是CSDN博客专家。3D视觉工坊坚持原创,近一年来输出了非常多的高质量文章,获得了粉丝的一致好评,我们将始终坚持走原创路线,打造一个铁杆粉丝的聚集区。
已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 书香水墨 设计师:CSDN官方博客 返回首页
实付 49.90元
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值