遥感图像中的小物体检测(内有新数据集)

文章:Small-Object Detection in Remote Sensing Images with End-to-End Edge-Enhanced GAN and Object Detector Network

摘要:

与大物体相比,遥感图像中的小物体检测性能并不理想,尤其是在低分辨率和嘈杂的图像中。一种基于生成对抗网络(GAN)的模型,称为增强超分辨率GAN(ESRGAN),具有出色的图像增强性能,但是重建的图像通常会丢失高频边缘信息。因此,物体检测性能在恢复的噪点和低分辨率遥感影像上显示出小目标物体的退化。受边缘增强GAN(EEGAN)和ESRGAN成功的启发,本研究使用了一种新型的边缘增强超分辨率GAN(EESRGAN)来改善遥感图像的质量,并以端到端的方式使用了不同的探测器网络,将检测器损耗反向传播到EESRGAN中,以提高检测性能。研究人员提出了一种包含三个组件的体系结构:ESRGAN,EEN (边缘增强网络)和检测网络。对于ESRGAN和EEN,使用了RRDB(残差密集块),对于检测器网络,我们使用了更快的基于区域的FRCNN(两阶段检测器)和SSD(一级检测器)。在相关数据集上进行的大量实验表明,该方法具有出色的性能。

研究背景及问题:

遥感图像目标检测在环境监管、监视、军事、国家安全、交通、林业、油气活动监测等领域具有广泛的应用前景,然而,目前的目标检测技术对于包含噪声和低分辨率的遥感图像而言,尤其是对于图像中的小目标,其检测效果并不理想,即使在高分辨率图像上,对小目标的检测性能也远低于对大目标的检测性能。其次,大面积高分辨率影像的成本较大&#

3D视觉工坊 CSDN认证博客专家 算法 3D视觉
个人公众号:3D视觉工坊。公众号特邀嘉宾及合伙人,先后就职于国内知名研究机构、自动驾驶公司、海康研究院,主要研究方向为深度学习、目标检测、语义分割、图像处理、自动驾驶感知算法等,CSDN博客专家。博主先后任职于国内知名研究院、知名大厂,致力于3D视觉算法、VLAM算法开发,涉及相机标定、手眼标定、结构光、点云后处理、三维重建等相关领域的研究,同时也是CSDN博客专家。3D视觉工坊坚持原创,近一年来输出了非常多的高质量文章,获得了粉丝的一致好评,我们将始终坚持走原创路线,打造一个铁杆粉丝的聚集区。
已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 书香水墨 设计师:CSDN官方博客 返回首页
实付 49.90元
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值