PDAL点云处理库介绍

点击上方“3D视觉工坊”,选择“星标”

干货第一时间送达

编辑丨dianyunPCL

PDAL是点云数据处理的库。这是一个C/C++开源库,用于点云数据的转换和处理。尽管该库中许多工具的重点和发展都起源于激光雷达点云数据的处理,但它也不限于激光雷达数据。

什么是PDAL?

PDAL是点云数据处理的库。这是一个C/C++开源库,用于点云数据的转换和处理。尽管该库中许多工具的重点和发展都起源于激光雷达点云数据的处理,但它也不限于激光雷达数据。

一个简单的PDAL点云处理流程,由读文件、滤波模块和写点云模块组成

组成此操作以将数据重新投影并加载到PostgreSQL的PDAL JSON流程如下所示:

{"pipeline":[{"type":"readers.las","filename":"input.las"},{"type":"filters.reprojection","out_srs":"EPSG:3857"},{"type":"writers.pgpointcloud","connection":"host='localhost' dbname='lidar' user='hobu'","table":"output","srid":"3857"}]}

PDAL可以为点云的滤波、剪裁、平铺、转换为处理流程以及必要时重用等操作组成中间模块。它允许您将这些流程定义为JSON文件,并提供一个pipeline来执行它们。

它与其他工具有何不同?

LAStools

Martin Isenburg(https://www.cs.unc.edu/~isenburg/)

的LAStools是可用于激光雷达处理的最常见的开源处理工具套件之一。PDAL在许多重要方面的理念不同:

1,PDAL的所有模块都是在OSI许可下作为开源软件发布的。

2,PDAL允许开发人员在处理流程作为专有扩展模块。这些可能是自定义格式读取器、专门的算法或整个方案。

3,PDAL可以对任何格式的点云数据进行操作,而不仅仅是ASPRS LAS。LAStools可以读取和写入除LAS以外的其他格式,但会将所有数据与其对LAS数据的内部处理相关联,从而将其限制为LAS格式提供的维度类型。

4,PDAL由用户使用其声明性JSON语法进行协调。LAStools是通过将许多小型的、专门化的命令行实用程序与复杂的参数连接在一起。

5,PDAL是一个开源项目,它的所有开发活动都可以在线获得https://github.com/PDAL/PDAL

与PCL的区别

PCL是点云数据的一个补充而不是替代的开源软件处理的套件。PCL库的开发专注于算法开发、机器人和计算机视觉以及实时激光扫描仪处理。PDAL可以读写PCL的PCD格式。

与Potree的区别

Potree是一个WebGL HTML5点云渲染器,使用ASPRS LAS和LASzip压缩LAS。你可以在https://github.com/potree/potree/进行访问

其他开源点云库

其他开源点云软件倾向于桌面GUI,而不是以库为中心。它们包括一些处理操作,有时甚至嵌入PDAL之类的工具。这些其他工具包括:

  • libLAS

  • CloudCompare

  • Fusion

  • OrfeoToolbox

libLAS项目是一个早于PDAL的开源项目,它提供了PDAL提供的一些处理功能。它目前处于维护模式,因为它依赖于LAS,相关的LAStools功能作为开源库发布,以及Python LAS软件的完成。

PDAL是从何而来?

PDAL借鉴了另一个非常流行的开源项目GDAL。GDAL是地理空间数据抽象库,它在整个地理空间软件行业中用于为各种光栅和矢量格式提供处理支持。PDAL为点云数据类型提供了相同的功能。PDAL是在为美国陆军工程兵团CRREL网格项目开发数据库存储和访问功能的基础上发展起来的。正在蔓延到libLAS中的功能被引入了一个新的库中,它的设计初衷是模仿地理空间软件领域中成功的提取、转换和加载库。随着其他软件开发人员使用PDAL为他们的软件提供点云数据转换和处理能力,PDAL已经吸引了更多的贡献者。

点云数据与栅格或矢量地理数据有何不同?

点云数据确实非常像许多地理空间从业者所熟悉的典型矢量点数据类型,但它们的庞大的数量会带来一些重大挑战。除了它们的X、Y和Z位置之外,每个点通常都有其他事物的完整属性信息,如强度、时间、RGB等。点云数据的典型矢量可能会达到一百万个左右的特征。所以这样的点云很快就会进入数十亿甚至万亿的规模,因此必须使用专门的处理和管理技术来有效地处理如此多的数据。用于提取和利用点云数据的算法也明显不同于典型的矢量GIS工作流程,数据组织对于有效利用可用计算非常重要。这些特性需要一个面向这些方法的库,PDAL实现了这一点。

PDAL擅长哪些任务?

PDAL在点云数据转换工作流程中非常有用。它允许用户通过为内容提供抽象API将算法应用于数据,从而让用户不用担心许多数据格式问题。PDAL的格式问题确实带来了一些间接成本。但是在大多数情况下,这并不重要,对于具有特定数据的特定处理工作流,专用工具肯定会优于它。PDAL还提供了一个简单的命令行,它通过Numpy扩展了简单的通用Python处理。这些特性使它对软件开发人员、数据管理人员和科学研究人员具有吸引力。

PDAL的弱点是什么?

PDAL没有提供友好的GUI界面,需要对点云的滤波、读写器有一定的了解。

PDAL首先是一个软件库。一个成功的软件库必须满足软件开发人员的需求,他们使用它为自己的软件提供软件功能。除了用作软件库之外,PDAL还提供了一些命令行应用程序,用户可以利用这些应用程序方便地用PDAL点云转换、过滤和处理数据。最后,PDAL以嵌入式操作和Python扩展的形式提供Python支持。

核心C++软件库

PDAL提供了一个C++ API开发软件,可以在自己的软件中提供点云处理能力。PDAL是跨平台C++,可以在Linux、OS X和Windows上编译运行。

开源库 https://github.com/PDAL/PDAL.git

本文仅做学术分享,如有侵权,请联系删文。

下载1

在「3D视觉工坊」公众号后台回复:3D视觉即可下载 3D视觉相关资料干货,涉及相机标定、三维重建、立体视觉、SLAM、深度学习、点云后处理、多视图几何等方向。

下载2

在「3D视觉工坊」公众号后台回复:3D视觉github资源汇总即可下载包括结构光、标定源码、缺陷检测源码、深度估计与深度补全源码、点云处理相关源码、立体匹配源码、单目、双目3D检测、基于点云的3D检测、6D姿态估计源码汇总等。

下载3

在「3D视觉工坊」公众号后台回复:相机标定即可下载独家相机标定学习课件与视频网址;后台回复:立体匹配即可下载独家立体匹配学习课件与视频网址。

重磅!3DCVer-学术论文写作投稿 交流群已成立

扫码添加小助手微信,可申请加入3D视觉工坊-学术论文写作与投稿 微信交流群,旨在交流顶会、顶刊、SCI、EI等写作与投稿事宜。

同时也可申请加入我们的细分方向交流群,目前主要有3D视觉CV&深度学习SLAM三维重建点云后处理自动驾驶、多传感器融合、CV入门、三维测量、VR/AR、3D人脸识别、医疗影像、缺陷检测、行人重识别、目标跟踪、视觉产品落地、视觉竞赛、车牌识别、硬件选型、学术交流、求职交流、ORB-SLAM系列源码交流、深度估计等微信群。

一定要备注:研究方向+学校/公司+昵称,例如:”3D视觉 + 上海交大 + 静静“。请按照格式备注,可快速被通过且邀请进群。原创投稿也请联系。

▲长按加微信群或投稿

▲长按关注公众号

3D视觉从入门到精通知识星球:针对3D视觉领域的知识点汇总、入门进阶学习路线、最新paper分享、疑问解答四个方面进行深耕,更有各类大厂的算法工程人员进行技术指导。与此同时,星球将联合知名企业发布3D视觉相关算法开发岗位以及项目对接信息,打造成集技术与就业为一体的铁杆粉丝聚集区,近2000星球成员为创造更好的AI世界共同进步,知识星球入口:

学习3D视觉核心技术,扫描查看介绍,3天内无条件退款

 圈里有高质量教程资料、可答疑解惑、助你高效解决问题

觉得有用,麻烦给个赞和在看~  

3D视觉工坊 CSDN认证博客专家 算法 3D视觉
个人公众号:3D视觉工坊。公众号特邀嘉宾及合伙人,先后就职于国内知名研究机构、自动驾驶公司、海康研究院,主要研究方向为深度学习、目标检测、语义分割、图像处理、自动驾驶感知算法等,CSDN博客专家。博主先后任职于国内知名研究院、知名大厂,致力于3D视觉算法、VLAM算法开发,涉及相机标定、手眼标定、结构光、点云后处理、三维重建等相关领域的研究,同时也是CSDN博客专家。3D视觉工坊坚持原创,近一年来输出了非常多的高质量文章,获得了粉丝的一致好评,我们将始终坚持走原创路线,打造一个铁杆粉丝的聚集区。
已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 书香水墨 设计师:CSDN官方博客 返回首页
实付 49.90元
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值