十年之后,CV经典教材《计算机视觉:算法与应用》迎来第二版,初稿开放下载...

击上方“3D视觉工坊”,选择“星标”

干货第一时间送达

来源丨机器之心

你也在用《计算机视觉:算法与应用》入门 CV 吗?或许你手里的版本已经有点过时了。

《计算机视觉:算法与应用》第二版新书地址:在公众号「3D视觉工坊」,后台回复「计算机视觉算法与应用」,即可直接下载。

提到计算机视觉领域的入门书,不少人会推荐 Facebook 研究科学家 Richard Szeliski 的《计算机视觉:算法与应用》。这本书的英文版于 2010 年出版,2011 年被翻译成中文在国内面世,成为很多人学习计算机视觉的入门教材。

这本书探索了用于分析和解释图像的各种常用技术,描述了具有一定挑战性的视觉应用方面的成功实例,兼顾专业的医学成像和图像编辑与拼接之类有趣的大众应用。在这本书中,作者从科学的角度介绍了基本的视觉问题,将成像过程的物理模型公式化,然后在此基础上生成对场景的逼真描述,他还运用统计模型来分析和运用严格的工程方法来解决这些问题。

作为一本被广泛采用的教材,《计算机视觉:算法与应用》非常受初学者欢迎,有人称赞其「为计算机视觉技术的初学者(本科生)提供了广泛的标准计算机视觉问题的坚实基础」。

内容引自知乎用户 @红色石头。原贴链接:https://zhuanlan.zhihu.com/p/85618233

还有人表示,这本书「写得很简单,看完后对这个领域有了很好的把握,而且很多内容都有代码,感兴趣的地方自己尝试后,对算法理解也加深了很多」。

内容引自知乎用户 @Recruit (https://www.zhihu.com/people/rui-shi-87)。原贴链接:https://www.zhihu.com/question/28813777/answer/85845127

毋庸置疑,《计算机视觉:算法与应用》是一本高质量的入门教材。但美中不足的是,这本书写于十年前,涉及的机器学习、深度学习内容较少,而近年来,这两项技术又在视觉领域实现了爆炸式增长。

为了弥补这一缺憾,最近,作者 Richard Szeliski 在自己的个人主页上宣布,《计算机视觉:算法与应用》第二版已经基本完成,并发布了新书的 PDF 版本,向读者征集意见。

  • 新书主页:http://szeliski.org/Book/

  • 下载链接:https://www.dropbox.com/sh/88qvr1z7fpfx1tv/AAB4Ia3yEMuZ4WSzNWB5acTta?dl=0&preview=SzeliskiBookDraft_20200901.pdf

新书介绍了哪些内容?

Richard Szeliski 在新书的前言中介绍说,这本书萌芽于 2001 年,当时华盛顿大学的 Steve Seitz 邀请他一起讲授一门课程——「Computer Vision for Computer Graphics」。后来,这门课程逐渐演变成一份愈发完整的计算机视觉教学大纲,还形成了一套以项目为导向的课程结构。

基于这些课程经验和在企业研究实验室的多年积累,Richard Szeliski 写了《计算机视觉:算法与应用》的第一版。他表示,这本书更加强调能够在现实世界发挥作用的基本技术,而不是高深的数学原理。

第一版的《计算机视觉:算法与应用》共计 14 个章节,分别为:

  1. 引言;

  2. 图像形成;

  3. 图像处理;

  4. 特征检测与匹配;

  5. 分割;

  6. 基于特征的对齐;

  7. 由运动到结构;

  8. 稠密运动估计;

  9. 图像拼接;

  10. 计算摄影学;

  11. 立体匹配;

  12. 3D 重建;

  13. 基于图像的渲染;

  14. 识别。

第二版的《计算机视觉:算法与应用》也是 14 个章节,分别为:

  1. 引言;

  2. 成像;

  3. 图像处理;

  4. 模型拟合与优化;

  5. 深度学习;

  6. 识别;

  7. 特征检测与匹配;

  8. 图像对齐与拼接;

  9. 运动估计;

  10. 计算摄影学;

  11. 由运动到结构与 SLAM;

  12. 深度估计;

  13. 3D 重建;

  14. 基于图像的渲染;

新版目录如下:

可以看出,与第一版相比,第二版发生了很大的变化,其中最显著的变化包括:

  • 机器学习、深度学习和深度神经网络出现在第五章,因为它们在视觉算法中扮演的角色与前两章介绍的经典图像处理、图 / 概率模型、能量最小化方法一样重要。

  • 「识别」从第 14 章提前到了第 6 章,因为端到端深度学习系统不再需要开发特征检测、匹配、分割等构建模块,而大多数选修视觉课程的同学可能主要是对图像识别感兴趣,所以把这章提前有利于他们构建自己的项目。

除此之外,该书还增加了一些当前最新的技术、文献和应用,如手机计算摄影学和自主导航技术。

在之前的教学过程中,作者发现让学生实现一些小项目非常有用,有时这些项目甚至可以组成会议论文。因此,该书每一章末尾的练习都包含一些建议,针对一些期中小项目进行指导。此外,书中还包含一些尚未解决的开放性问题。

该书适用于计算机科学和电气工程高年级本科生和研究生。读者上手之前最好先学习一门图像处理或计算机图形学课程,这样就能少花点时间学习数学基础知识,多一点时间去学计算机视觉技术。为了让读者了解该领域的最新进展,作者尽量引用最新的研究。

作者简介

Richard Szeliski 博士是计算机视觉领域的大师级人物,他在计算机视觉研究方面有 30 多年的丰富经验,主攻计算机视觉和计算机图形学。

Richard Szeliski 先后任职于 DEC(美国数字设备公司)和微软研究院。1996 年,他在微软研究院任职期间提出了一种基于运动的全景图像拼接模型,采用 L-M 算法,通过求图像间的几何变换关系来进行图像匹配。此方法是图像拼接领域的经典算法,Richard Szeliski 也因此成为图像拼接领域的奠基人。

目前,Richard Szeliski 在 Facebook 担任研究科学家,他还是 Facebook 计算摄影部门的创始负责人。2017 年,Richard Szeliski 获得 ICCV 大会颁发的杰出研究奖。

Richard Szeliski 表示,他的新书还处在勘误、征集建议的阶段,读者可以通过电子邮件与他联系。

本文仅做学术分享,如有侵权,请联系删文。

下载1

在「3D视觉工坊」公众号后台回复:3D视觉即可下载 3D视觉相关资料干货,涉及相机标定、三维重建、立体视觉、SLAM、深度学习、点云后处理、多视图几何等方向。

下载2

在「3D视觉工坊」公众号后台回复:3D视觉github资源汇总即可下载包括结构光、标定源码、缺陷检测源码、深度估计与深度补全源码、点云处理相关源码、立体匹配源码、单目、双目3D检测、基于点云的3D检测、6D姿态估计源码汇总等。

下载3

在「3D视觉工坊」公众号后台回复:相机标定即可下载独家相机标定学习课件与视频网址;后台回复:立体匹配即可下载独家立体匹配学习课件与视频网址。

重磅!3DCVer-学术论文写作投稿 交流群已成立

扫码添加小助手微信,可申请加入3D视觉工坊-学术论文写作与投稿 微信交流群,旨在交流顶会、顶刊、SCI、EI等写作与投稿事宜。

同时也可申请加入我们的细分方向交流群,目前主要有3D视觉CV&深度学习SLAM三维重建点云后处理自动驾驶、CV入门、三维测量、VR/AR、3D人脸识别、医疗影像、缺陷检测、行人重识别、目标跟踪、视觉产品落地、视觉竞赛、车牌识别、硬件选型、学术交流、求职交流等微信群。

一定要备注:研究方向+学校/公司+昵称,例如:”3D视觉 + 上海交大 + 静静“。请按照格式备注,可快速被通过且邀请进群。原创投稿也请联系。

▲长按加微信群或投稿

▲长按关注公众号

3D视觉从入门到精通知识星球:针对3D视觉领域的知识点汇总、入门进阶学习路线、最新paper分享、疑问解答四个方面进行深耕,更有各类大厂的算法工程人员进行技术指导。与此同时,星球将联合知名企业发布3D视觉相关算法开发岗位以及项目对接信息,打造成集技术与就业为一体的铁杆粉丝聚集区,近2000星球成员为创造更好的AI世界共同进步,知识星球入口:

学习3D视觉核心技术,扫描查看介绍,3天内无条件退款

 圈里有高质量教程资料、可答疑解惑、助你高效解决问题

觉得有用,麻烦给个赞和在看~  

3D视觉工坊 CSDN认证博客专家 算法 3D视觉
个人公众号:3D视觉工坊。公众号特邀嘉宾及合伙人,先后就职于国内知名研究机构、自动驾驶公司、海康研究院,主要研究方向为深度学习、目标检测、语义分割、图像处理、自动驾驶感知算法等,CSDN博客专家。博主先后任职于国内知名研究院、知名大厂,致力于3D视觉算法、VLAM算法开发,涉及相机标定、手眼标定、结构光、点云后处理、三维重建等相关领域的研究,同时也是CSDN博客专家。3D视觉工坊坚持原创,近一年来输出了非常多的高质量文章,获得了粉丝的一致好评,我们将始终坚持走原创路线,打造一个铁杆粉丝的聚集区。
99元秒杀!每天前100人再送5门编程课! AI+5门300元课程+讲师社群答疑+社群闭门分享会=99元 源码开源下载:https://github.com/DjangoPeng/keras-101/tree/master/code_samples 【为什么学AI】 归功于近来大规模数据和硬件计算能力的大幅度提升,人工智能的概念近两一直是市场追捧的对象。目前各大厂都争先恐后地布局AI,落地各类AI的的商业应用,也随之打响了一场激烈的人才争夺战。长远来看,越快将 AI 用于自己的工作中就能越早体会到AI带来的收益。 【讲师介绍】 彭靖田 Google Developer Experts。 曾为 TensorFlow Top级 的贡献者,著书《深入理解TensorFlow》,是国内第一本深度剖析 Google AI 框架的畅销书。 曾从0到1深入参与了华为 2012 实验室深度学习平台和华为深度学习云服务的设计与研发工作。 【课程设计】 课程内容基于最新的Keras本(你也可以使用 TensorFlow 2 的 tf.keras 模块),其中有大量独家解读、案例,以及不少讲师一线实战多的方法论和深度思考。同时,在层次划分上,难易兼顾,循序渐进。既有核心的基础知识,也有高级的进阶操作,尽量做到“老少皆宜”。 课程分为基础篇、入门篇和实战篇: 一、基础篇: 主要讲解人工智能发展史和深度学习脱颖而出的原由,以及神经网络的基础概念、理论实现、优化原理和计算方法。 二、入门篇: 主攻快速上手,通过7个小节让你从0到1实现环境搭建、模型优化,直接试水2个实战项目。同时,增强AI的理论学习,系统掌握机器学习3大分支、模型评估方法、数据预处理常用手段与过拟合问题的解决方案。 三、实战篇: 通过4个实战全面掌握深度学习理论与实现,涵盖目标检测、图像分类、可视化和可解释性学习、迁移学习、特征提取、数据增强等。带你综合运用前面所学的所有知识,逐渐熟练AI开发流程与技能。 课程包含思维导图上的所有内容(价值199元)前500名立减100元,仅99元买完就能学!
©️2020 CSDN 皮肤主题: 书香水墨 设计师:CSDN官方博客 返回首页
实付 19.90元
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值