李飞飞团队最新研究,真实场景中识别物体具体属性,连表面纹理都识别出来了...

点击上方“3D视觉工坊”,选择“星标”

干货第一时间送达

整理:公众号@量子位 

本文仅做学术分享,如有侵权,请联系删除。

现在,细微到物体表面的纹理,AI都可以识别。

这就是李飞飞团队新研究。

我们知道,卷积神经网络在识别视觉对象方面很出色,但还不能很好的识别出物体的具体属性,比如表面形状、纹理等。

而最近,李飞飞团队的最新研究——Learning Physical Graph Representations from Visual Scenes,就一举解决了这个问题。

还引入了物理场景图(Physical Scene Graphs,PSG)和对应的PSGNet网络架构。

PSG的概念概括了MONet/IODINE3D-RelNet的工作思路,力求能够在几何上处理复杂的物体形状和纹理。

这样,在真实世界的视觉数据中学习,可以做到自监督,因而不需要大量和繁琐的场景组件标记。

具体研究是如何呢?我们一起来看看吧!

PSGNet的建构

简单来说,用一张图就可以表示。

棕色方框表示PSGNet的三个阶段。

首先,特征提取。采用ConvRNN从输入中提取特征。

然后,构建图形,负责优化现有PSG级别。

最后,用于端到端训练的图形渲染

其中,在构建图形这一阶段,由一对可学习的模块组成,即池化和向量化。

前者在现有图节点上动态的构建一个池化核的分区,作为学习的、成对的节点 affinities函数。

后者在与每个池化核相关联的图像区域及其边界上,聚合节点统计,来产生新节点的属性向量。这样便可以直观的表示出真实场景中的物体属性。

在「图形渲染阶段」,PSG相当于通过一个解码器。

在每个时间点将图节点属性,以及图节点顶层空间配准(SR),渲染成RGB、深度、段和RGB变化图z。

举个例子,除开棕色方框部分,就是一个PSG的三个层次以及与其纹理(QTR)和形状(QSR)渲染图。

实验结果

随后,将模型在 TDW-Primitives、TDW-Playroom 和 Gibson 测试集上训练,并与最近基于CNN场景分割方法进行性能比较。

首先说一说这三个数据集,为什么要选择这三个数据集呢?

Primitives和Playroom中的图像由ThreeDWorld (TDW)生成。其中,Primitives是在一个简单的3D房间中渲染的原始形状(如球体、圆锥体和立方体)的合成数据集。

Playroom是具有复杂形状和逼真纹理的物体的合成数据集,如动物、家具和工具,渲染为具有物体运动和碰撞的图形。

Gibson则是由斯坦福大学校园内部建筑物的RBG-D扫描组成。

这三个数据集都提供了用于模型监督的RGB、深度和表面法线图。

性能的比较结果如下:

注意的是,OP3和PSGNetM没有在Gibson或Primitives上进行训练,因为它们有静态测试集。

可以看到与其他模型相比,PSGNet表现出了更优的性能。

PSGNets的场景分解

此外,文中还通过「手动编辑」PSG顶层的节点,观察其渲染效果,来说明PSG能够正确的将场景表示为离散的对象及其属性。

就像这样。

从图中删除一个节点(DeleteA或者B),将它们移动到新的3D位置(MoveB和Occlude),改变形状属性(Scale/Rot),或者交换两个节点的颜色(Swap RGB)。

结果,发现都会改变相对于原始(Full)预测的图形渲染。

研究团队

这篇论文的研究团队是由斯坦福大学麻省理工大学多个团队共同合作完成的,其中就包括李飞飞团队和来自MIT CSAIL的团队。

第一作者名叫Daniel Bear,心理学系博士后研究员,来自斯坦福大学吴蔡神经科学研究所

你可能想问,为何研究脑科学的会跟李飞飞团队一起合作呢?

看了这位作者的研究方向你就知道了。

他一直都在致力于研究动物是如何感知世界。

从一开始哈佛大学本科期间,就主要研究动物电信号,比如来自感官刺激的信号,如何诱导神经元基因表达。

接着在哈佛大学继续攻读博士时,就研究化学信号,比如动物遇到的气味分子,如何转化为嗅觉感知。

而现在博士后研究期间,他就把目光转向了采用计算模型来表示动物大脑中的表征。如果可以,给他进一步的研究提供了思路。

于是,他们就这样交织在了一起。

吴蔡神经科学研究所

也许有朋友会对这个研究所的名字有点陌生。

但这是斯坦福大学里以中国人命名的研究所,2018年10月,出于纪念蔡崇信吴明华夫妇对该所慷慨捐赠,正式命名为吴蔡神经科学研究所。

蔡崇信,大家都不陌生了。阿里巴巴合伙人,最早慧眼识珠加入马云的阿里事业的那个人。

也是鲜有机会,其夫人也被关注到。

现在,他们捐赠的研究所,产出了新成果。

所以新论文到手,欢迎细致研读后分享你的“读后感”哦。

论文地址:
https://arxiv.org/abs/2006.12373

推荐阅读

重磅!3DCVer-学术论文写作投稿 交流群已成立

扫码添加小助手微信,可申请加入3D视觉工坊-学术论文写作与投稿 微信交流群,旨在交流顶会、顶刊、SCI、EI等写作与投稿事宜。

同时也可申请加入我们的细分方向交流群,目前主要有3D视觉CV&深度学习SLAM三维重建点云后处理自动驾驶、CV入门、三维测量、VR/AR、3D人脸识别、医疗影像、缺陷检测、行人重识别、目标跟踪、视觉产品落地、视觉竞赛、车牌识别、硬件选型、学术交流、求职交流等微信群,请扫描下面微信号加群,备注:”研究方向+学校/公司+昵称“,例如:”3D视觉 + 上海交大 + 静静“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进去相关微信群。原创投稿也请联系。

▲长按加微信群或投稿

▲长按关注公众号

3D视觉从入门到精通知识星球:针对3D视觉领域的知识点汇总、入门进阶学习路线、最新paper分享、疑问解答四个方面进行深耕,更有各类大厂的算法工程人员进行技术指导。与此同时,星球将联合知名企业发布3D视觉相关算法开发岗位以及项目对接信息,打造成集技术与就业为一体的铁杆粉丝聚集区,近1000+星球成员为创造更好的AI世界共同进步,知识星球入口:

学习3D视觉核心技术,扫描查看介绍,3天内无条件退款

 圈里有高质量教程资料、可答疑解惑、助你高效解决问题

3D视觉工坊 CSDN认证博客专家 算法 3D视觉
个人公众号:3D视觉工坊。公众号特邀嘉宾及合伙人,先后就职于国内知名研究机构、自动驾驶公司、海康研究院,主要研究方向为深度学习、目标检测、语义分割、图像处理、自动驾驶感知算法等,CSDN博客专家。博主先后任职于国内知名研究院、知名大厂,致力于3D视觉算法、VLAM算法开发,涉及相机标定、手眼标定、结构光、点云后处理、三维重建等相关领域的研究,同时也是CSDN博客专家。3D视觉工坊坚持原创,近一年来输出了非常多的高质量文章,获得了粉丝的一致好评,我们将始终坚持走原创路线,打造一个铁杆粉丝的聚集区。
©️2020 CSDN 皮肤主题: 书香水墨 设计师: CSDN官方博客 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值