点云采样的三种方法

点击上方“3D视觉工坊”,选择“星标”

干货第一时间送达

本文由知乎作者GeometryHub授权转载,不得擅自二次转载。原文链接:https://zhuanlan.zhihu.com/p/86044055

点云采样分类

点云采样的方法有很多种,常见的有均匀采样,几何采样,随机采样,格点采样等。下面介绍一些常见的采样方法。

格点采样

格点采样,就是把三维空间用格点离散化,然后在每个格点里采样一个点。具体方法如下:

1. 创建格点:如中间图所示,计算点云的包围盒,然后把包围盒离散成小格子。格子的长宽高可以用户设定,也可以通过设定包围盒三个方向的格点数来求得。

2. 每个小格子包含了若干个点,取离格子中心点最近的点为采样点,如右图所示。

格点采样的特点:

  • 效率非常高

  • 采样点分布比较均匀,但是均匀性没有均价采样高

  • 可以通过格点的尺寸控制点间距

  • 不能精确控制采样点个数

均匀采样

均匀采样的方法有很多,并且有一定的方法来评估采样的均匀性。这里介绍一种简单的均匀采样方法,最远点采样。具体方法如下:

输入点云记为C,采样点集记为S,S初始化为空集。

1. 随机采样一个种子点Seed,放入S。如图1所示。

2. 每次采样一个点,放入S。采样的方法是,在集合C-S里,找一点距离集合S距离最远的点。其中点到集合的距离为,这点到集合里所有点距最小的距离。如图2-6所示,采样点S的数量分别为2,4,10,20,100.

最远点采样的特点:

  • 采样点分布均匀

  • 算法时间复杂度有些高,因为每次采样一个点,都要计算集合到集合之间的距离。可以采用分治的方法来提高效率。

  • 采样点一般先分布在边界附近,这个性质在有些地方是有用的,比如图元检测里面的点采样。

几何采样

几何采样,在点云曲率越大的地方,采样点个数越多。下面介绍一种简单的几何采样方法,具体方法如下:

输入是一个点云,目标采样数S,采样均匀性U

1.点云曲率计算比较耗时,这里我们采用了一个简单方法,来近似达到曲率的效果:给每个点计算K邻域,然后计算点到邻域点的法线夹角值。曲率越大的地方,这个夹角值就越大。

2.设置一个角度阈值,比如5度。点的邻域夹角值大于这个阈值的点,被放入几何特征区域G。这样点云就分成了两部分,几何特征区域G和其它区域。

3.均匀采样几何特征区域G和其它区域,采样数分别为S * (1 - U),S * U。

下图是一个均匀采样和几何采样的比较图,这个采样方法的特点:

  • 几何特征越明显的区域,采样点个数分布越多

  • 计算效率高

  • 采样点局部分布是均匀的

  • 稳定性高:通过几何特征区域的划分,使得采样结果抗噪性更强

上述内容,如有侵犯版权,请联系作者,会自行删文。

推荐阅读:

吐血整理|3D视觉系统化学习路线

那些精贵的3D视觉系统学习资源总结(附书籍、网址与视频教程)

超全的3D视觉数据集汇总

大盘点|6D姿态估计算法汇总(上)

大盘点|6D姿态估计算法汇总(下)

机器人抓取汇总|涉及目标检测、分割、姿态识别、抓取点检测、路径规划

汇总|3D点云目标检测算法

汇总|3D人脸重建算法

那些年,我们一起刷过的计算机视觉比赛

总结|深度学习实现缺陷检测

深度学习在3-D环境重建中的应用

汇总|医学图像分析领域论文

大盘点|OCR算法汇总

重磅!3DCVer-知识星球和学术交流群已成立

3D视觉从入门到精通知识星球:针对3D视觉领域的知识点汇总、入门进阶学习路线、最新paper分享、疑问解答四个方面进行深耕,更有各类大厂的算法工程人员进行技术指导,820+的星球成员为创造更好的AI世界共同进步,知识星球入口:

学习3D视觉核心技术,扫描查看介绍,3天内无条件退款

 圈里有高质量教程资料、可答疑解惑、助你高效解决问题

欢迎加入我们公众号读者群一起和同行交流,目前有3D视觉CV&深度学习SLAM三维重建点云后处理自动驾驶、CV入门、三维测量、VR/AR、3D人脸识别、医疗影像、缺陷检测、行人重识别、目标跟踪、视觉产品落地、视觉竞赛、车牌识别、硬件选型、学术交流、求职交流等微信群,请扫描下面微信号加群,备注:”研究方向+学校/公司+昵称“,例如:”3D视觉 + 上海交大 + 静静“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进去相关微信群。原创投稿也请联系。

▲长按加群或投稿

3D视觉工坊 CSDN认证博客专家 算法 3D视觉
个人公众号:3D视觉工坊。公众号特邀嘉宾及合伙人,先后就职于国内知名研究机构、自动驾驶公司、海康研究院,主要研究方向为深度学习、目标检测、语义分割、图像处理、自动驾驶感知算法等,CSDN博客专家。博主先后任职于国内知名研究院、知名大厂,致力于3D视觉算法、VLAM算法开发,涉及相机标定、手眼标定、结构光、点云后处理、三维重建等相关领域的研究,同时也是CSDN博客专家。3D视觉工坊坚持原创,近一年来输出了非常多的高质量文章,获得了粉丝的一致好评,我们将始终坚持走原创路线,打造一个铁杆粉丝的聚集区。
已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 书香水墨 设计师:CSDN官方博客 返回首页
实付 49.90元
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值