机器人抓取领域相关数据集

点击上方“3D视觉工坊”,选择“星标”

干货第一时间送达

前言

针对机器人抓取中的检测、分割、姿态识别、抓取点检测、路径规划等任务,总结了对应的数据集,在这里分享下,数据格式为类别+数量。

一、检测任务

PASCAL VOC:20类,11540

SUN:908类,131,072

MS COCO:91类,328,000

Places:434类,10 millions

Open Images:6000类,9 millions 

二、分割任务

PASCAL VOC 2012 Segmentation:21类,2913

PASCAL-Context:540类,19,740

PASCAL-Part:20类,19,740

SBD:21类,11,355

MS COCO:80类,204,721

DAVIS:4类,8422

三、姿态识别任务

LineMod:15类,1100+ frame video sequences

T-LESS:30类,49K images

PU-APC:24类,10000 images

YCB-Video:21类,92 RGB-D videos

四、抓取点检测

Standford Grasping:10 object,13747 RGB Images,13747 Depth Images

Cornell Grasping:240 object,885 RGB Images,885 Depth Images

YCB Benchmarks:77 object,46200 RGB Images,46200 Depth Images

CMU dataset:150+object,50567 RGB Images

Google dataset:800000 RGB Images

Dex-Net 1.0:150+object,50567 RGB Images

Dex-Net 2.0:150+object,50567 RGB Images

JACQUARD:11619object,54485 RGB Images,108970Depth Images

五、抓取路径规划

抓取路径规划数据集:

1、Supersizingself-supervision: Learning to grasp from 50k tries and 700 robot hours.

2、Learning hand-eyecoordination for robotic grasping with deep learning and large-scale datacollection.

3、Multimodal grasp dataset: A novel visual–tactile data set for robotic manipulation.

抓取仿真:

1、Graspit! a versatile simulator for robotic grasping.

2、Opengrasp: A toolkit for robot grasping simulation.

3、Deep reinforcement learning for vision-based robotic grasping: Asimulated comparative evaluation of offpolicy methods.

上述内容,如有侵犯版权,请联系作者,会自行删文。

重磅!3DCVer-学术交流群已成立

欢迎加入我们公众号读者群一起和同行交流,目前有3D视觉CV&深度学习SLAM三维重建点云后处理自动驾驶、CV入门、医疗影像、缺陷检测、行人重识别、目标跟踪、视觉产品落地、视觉竞赛、车牌识别等微信群,请扫描下面微信号加群,备注:”研究方向+学校/公司+昵称“,例如:”3D视觉 + 上海交大 + 静静“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进去相关微信群。原创投稿也请联系。

▲长按加群或投稿

▲长按关注我们

3D视觉工坊 CSDN认证博客专家 算法 3D视觉
个人公众号:3D视觉工坊。公众号特邀嘉宾及合伙人,先后就职于国内知名研究机构、自动驾驶公司、海康研究院,主要研究方向为深度学习、目标检测、语义分割、图像处理、自动驾驶感知算法等,CSDN博客专家。博主先后任职于国内知名研究院、知名大厂,致力于3D视觉算法、VLAM算法开发,涉及相机标定、手眼标定、结构光、点云后处理、三维重建等相关领域的研究,同时也是CSDN博客专家。3D视觉工坊坚持原创,近一年来输出了非常多的高质量文章,获得了粉丝的一致好评,我们将始终坚持走原创路线,打造一个铁杆粉丝的聚集区。
<p> <span>Mask R-CNN是一种基于深度学习的图像实例分割方法,可对物体进行目标检测和像素级分割。</span> </p> <p> <span>本课程将手把手地教大家使用VIA图像标注工具制作自己的数据集,并使用Mask R-CNN训练自己的数据集,从而能开展自己的图像分割应用。</span> </p> <p> <span><br /></span> </p> <p> <span>本课程有三个项目案例实践:</span> </p> <p> <span>(1) balloon实例分割 :对图像中的气球做检测和分割</span> </p> <p> <span>(2) pothole(单类物体)实例分割:对汽车行驶场景中的路坑进行检测和分割</span> </p> <p> <span>(3) roadscene( 多类物体)实例分割:对汽车行驶场景中的路坑、车、车道线等进行检测和分割</span> </p> <p> <br /></p> <p> <span>本课程使用Keras版本的Mask R-CNN,在Ubuntu系统上做项目演示。 </span> </p> <p> <span>本课程提供项目的数据集和python程序文件。</span> </p> <p> <span><br /></span> </p> <p> <span><span style="color:#000000;">下面是使用Mask R-CNN对roadscene进行图像实例分割的测试结果</span><span style="color:#000000;">:</span><br /></span> </p> <p> <span><br /></span> </p> <p> <span><img src="https://img-bss.csdn.net/201906230718236651.gif" alt="" /><br /></span> </p> <p> <span><br /></span> </p> <p> <span><span style="color:#333333;">下图是使用Mask R-CNN对pothole进行单类物体图像实例分割的测试结果:</span></span> </p> <p> <span><img src="https://img-bss.csdn.net/201906230719199275.jpg" alt="" /><br /></span> </p> <p> <span><span style="color:#333333;">下图是使用Mask R-CNN对roadscene进行多类物体图像实例分割的测试结果:</span></span> </p> <p> <span><img src="https://img-bss.csdn.net/201906230719513299.jpg" alt="" /><br /></span> </p>
相关推荐
©️2020 CSDN 皮肤主题: 书香水墨 设计师:CSDN官方博客 返回首页
实付 49.90元
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值